Monodisperse magnetic core/shell microspheres with Pd nanoparticles-incorporated-carbon shells.

نویسندگان

  • Qunling Fang
  • Qing Cheng
  • Huajian Xu
  • Shouhu Xuan
چکیده

This work reports a hard self-template method to synthesize core/shell like Fe3O4@C microparticles, in which the Pd nanocrystals can be alternatively incorporated into the carbon shells. The Fe3O4@polyaniline core/shell microspheres were first synthesized as the precursor by in situ polymerization of aniline onto the surface of the Fe3O4 microspheres. In a subsequent carbonization of the precursor under a vacuum oven, the Fe3O4 core was preserved and the polyaniline shell transferred into carbon shells enveloping the magnetic sphere, forming magnetic Fe3O4@C microspheres. The Pd ions could be impregnated into the polyaniline shell, and thus the obtained composites were transformed into Fe3O4@C/Pd microspheres under the same vacuum heating progress. The as-obtained system demonstrates superparamagnetic characteristics, which would benefit its potential application in nanocatalysts. This strategy provides an efficient approach for tailoring core/shell materials with desired functionalities and structures by adjusting the precursors and structure-directing agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical nanospheres based on Pd nanoparticles dispersed on carbon coated magnetite cores with a mesoporous ceria shell: a highly integrated multifunctional catalyst.

The design and fabrication of core-shell nanostructures with steerable morphologies and tailored performances have aroused abundant scientific studies for organic transformations. We here report the preparation of multifunctional and highly efficient core-shell microspheres, which bear a carbon-protected magnetic Fe3O4 core, a transition layer of active Pd nanoparticles (NPs) and an outer shell...

متن کامل

Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions

Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shell...

متن کامل

Core–Shell Bimetallic Nanoparticles Robustly Fixed on the Outermost Surface of Magnetic Silica Microspheres

The major challenges in practically utilising the immense potential benefits of nanomaterials are controlling aggregation, recycling the nanomaterials, and fabricating well-defined nanoparticulate materials using innovative methods. We present a novel innovative synthetic strategy for core-shell bimetallic nanoparticles that are well-defined, ligand-free, and robustly fixed on the outermost sur...

متن کامل

Screen-printed Electrode Modified with Magnetic Core-shell Nanoparticles for Detection of Chlorpromazine

In the present study, magnetic core-shell manganese ferrite nanoparticles (MCMNP) were synthesized and used for construction of a magnetic core-shell manganese ferrite nanoparticles modified screen-printed carbon electrode (MCSNP-SPCE). Cyclic voltammetry was used to study the electrochemical behavior of chlorpromazine (CPZ) and its determination was conducted by applying square wave voltammetr...

متن کامل

Multi-step Coating of Monodisperse Silica Spheres by Titania Nanoparticles Base on Electrostatic Attraction Strategy

TiO2-SiO2 core-shell particles include of monodisperse silica core and nanostructured titania shell were synthesized by a multi-step coating process. The monodisperse silica spheres were synthesized by Stöber method and titania shell was obtained of a colloidal sol prepared by a hydrolysis–condensation reaction. The titania sol was deposited on monodisperse silica spheres by a multi-step coatin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 43 6  شماره 

صفحات  -

تاریخ انتشار 2014